The problem of opportunistic access of parallel channels occupied by primary users is considered. Under a continuous-time Markov chain modeling of the channel occupancy by the primary users, a slotted transmission protocol for secondary users using a periodic sensing strategy with optimal dynamic access is proposed. To maximize channel utilization while limiting interference to primary users, a framework of constrained Markov decision processes is presented, and the optimal access policy is derived via a linear program. Simulations are used for performance evaluation. It is demonstrated that periodic sensing yields negligible loss of throughput when the constraint on interference is tight.
Qing Zhao, Stefan Geirhofer, Lang Tong, Brian M. S