Object space (OS) parallelization of an efficient direct volume rendering algorithm for unstructured grids on distributed-memory architectures is investigated. The adaptive OS decomposition problem is modeled as a graph partitioning (GP) problem using an efficient and highly accurate estimation scheme for view-dependent node and edge weighting. In the proposed model, minimizing the cutsize corresponds to minimizing the parallelization overhead due to the data communication and redundant computation/storage while maintaining the GP balance constraint corresponds to maintaining the computational load balance in parallel rendering. A GP-based, view-independent cell clustering scheme is introduced to induce more tractable view-dependent computational graphs for successive visualizations. As another contribution, a graphtheoretical remapping model is proposed as a solution to the general remapping problem and is used in minimization of the cell-data migration overhead. The remapping tool...