Abstract-- We present a unified detection framework for spatial multiplexing multiple-input multiple-output (MIMO) systems by generalizing Heller's classical feedback decoding algorithm for convolutional codes. The resulting generalized feedback detector (GFD) is characterized by three parameters: window size, step size and branch factor. Many existing MIMO detectors are turned out to be special cases of the GFD. Moreover, different parameter choices can provide various performance-complexity tradeoffs. The connection between MIMO detectors and tree search algorithms is also established. To reduce redundant computations in the GFD, a shared computation technique is proposed by using a tree data structure. Using a union bound based analysis of the symbol error rates, the diversity order and signal-to-noise ratio (SNR) gain are derived analytically as functions of the three parameters; for example, the diversity order of the GFD varies between 1 and N. The complexity of the GFD vari...