Given a non-planar graph G with a subdivision of K5 as a subgraph, we can either transform the K5-subdivision into a K3,3-subdivision if it is possible, or else we obtain a partition of the vertices of G\K5 into equivalence classes. As a result, we can reduce a projective planarity or toroidality algorithm to a small constant number of simple planarity checks [6] or to a K3,3-subdivision in the graph G. It significantly simplifies algorithms presented in [7], [10] and [12]. We then need to consider only the embeddings on the given surface of a K3,3-subdivision, which are much less numerous than those of K5.
Andrei V. Gagarin, William Kocay