Sciweavers

CCE
2004

Continuous reformulations of discrete-continuous optimization problems

13 years 11 months ago
Continuous reformulations of discrete-continuous optimization problems
This paper treats the solution of nonlinear optimization problems involving discrete decision variables, also known as generalized disjunctive programming (GDP) or mixed-integer nonlinear programming (MINLP) problems, that arise in process engineering. The key idea is to eliminate the discrete decision variables by adding a set of continuous variables and constraints that represent the discrete decision space of the optimization problem. With such a reformulation, we are able to apply solution algorithms for purely continuous nonlinear optimization problems to efficiently calculate local minima of GDP or MINLP problems. In this contribution, we propose different alternatives to reformulate GDP/MINLP problems as continuous optimization problems. We furthermore investigate theoretical properties of the different reformulations with regard to their numerical solution. The proposed formulations are illustrated and analyzed on the basis of optimization problems dealing with process enginee...
Oliver Stein, Jan Oldenburg, Wolfgang Marquardt
Added 16 Dec 2010
Updated 16 Dec 2010
Type Journal
Year 2004
Where CCE
Authors Oliver Stein, Jan Oldenburg, Wolfgang Marquardt
Comments (0)