This paper proposes a traffic model and a parameter fitting procedure that are capable of achieving accurate prediction of the queuing behavior for IP traffic exhibiting long-range dependence. The modeling process is a discrete-time batch Markovian arrival process (dBMAP) that jointly characterizes the packet arrival process and the packet size distribution. In the proposed dBMAP, packet arrivals occur according to a discrete-time Markov modulated Poisson process (dMMPP) and each arrival is characterized by a packet size with a general distribution that may depend on the phase of the dMMPP. The fitting procedure is designed to provide a close match of both the autocovariance and the marginal distribution of the packet arrival process, using a dMMPP; a packet size distribution is fitted individually to each state of the dMMPP. A major feature of the procedure is that the number of states of the fitted dBMAP is not fixed a priori; it is determined as part of the procedure itself. In thi...