We present a new, single-rate method for compressing the connectivity information of a connected 2-manifold triangle mesh with or without boundary. Traditional compression schemes interleave geometry and connectivity coding, and are thus typically unable to utilise information from vertices (mesh regions) they have not yet processed. With the advent of competitive point cloud compression schemes, it has become feasible to develop separate connectivity encoding schemes which can exploit complete, global vertex position information to improve performance. Our scheme demonstrates the utility of this separation of vertex and connectivity coding. By traversing the mesh edges in a consistent fashion, and using global vertex information, we can predict the position of the vertex which completes the unprocessed triangle attached to a given edge. We then rank the vertices in the neighbourhood of this predicted position by their Euclidean distance. The distance rank of the correct closing verte...
Patrick Marais, James E. Gain, D. Shreiner