The local search algorithm WSat is one of the most successful algorithms for solving the satisfiability (SAT) problem. It is notably effective at solving hard Random 3-SAT instances near the so-called `satisfiability threshold', but still shows a peak in search cost near the threshold and large variations in cost over different instances. We make a number of significant contributions to the analysis of WSat on high-cost random instances, using the recently-introduced concept of the backbone of a SAT instance. The backbone is the set of literals which are entailed by an instance. We find that the number of solutions predicts the cost well for small-backbone instances but is much less relevant for the large-backbone instances which appear near the threshold and dominate in the overconstrained region. We show a very strong correlation between search cost and the Hamming distance to the nearest solution early in WSat's search. This pattern leads us to introduce a measure of the ...
Josh Singer, Ian P. Gent, Alan Smaill