Cryptographic algorithms play a key role in computer security and the formal analysis of their robustness is of utmost importance. Yet, logic and automated reasoning tools are seldom used in the analysis of a cipher, and thus one cannot often get the desired formal assurance that the cipher is free from unwanted properties that may weaken its strength. In this paper, we claim that one can feasibly encode the low-level properties of state-of-theart cryptographic algorithms as SAT problems and then use efficient automated theorem-proving systems and SAT-solvers for reasoning about them. We call this approach logical cryptanalysis. In this framework, for instance, finding a model for a formula encoding an algorithm is equivalent to finding a key with a cryptanalytic attack. Other important properties, such as cipher integrity or algebraic closure, can also be captured as SAT problems or as quantified boolean formulae. SAT benchmarks based on the encoding of cryptographic algorithms can be...