This paper considers problems of the following type: given an edgeweighted k-colored input graph with maximum color class size c, find a minimum or maximum c-way cut such that each color class is totally partitioned. Equivalently, given a weighted complete k-partite graph, cover its vertices with a minimum number of disjoint cliques in such a way that the total weight of the cliques is maximized or minimized. Our study was motivated by some work called the index domain alignment problem [6], which shows its relevance to optimization of distributed computation. Solutions of these problems also have applications in logistics [3] and manufacturing systems [10]. In this paper, we design some approximation algorithms by extending the matching algorithms to these problems. Both theoretical and experimental results show that the algorithms we designed produce good approximations. Communicated by D. Eppstein. Submitted: July 2000. Revised: August 2000. 1Research by this author was partially s...