Sciweavers

NN
2000
Springer

Independent component analysis: algorithms and applications

13 years 11 months ago
Independent component analysis: algorithms and applications
A fundamental problem in neural network research, as well as in many other disciplines, is finding a suitable representation of multivariate data, i.e. random vectors. For reasons of computational and conceptual simplicity, the representation is often sought as a linear transformation of the original data. In other words, each component of the representation is a linear combination of the original variables. Well-known linear transformation methods include principal component analysis, factor analysis, and projection pursuit. Independent component analysis (ICA) is a recently developed method in which the goal is to find a linear representation of nongaussian data so that the components are statistically independent, or as independent as possible. Such a representation seems to capture the essential structure of the data in many applications, including feature extraction and signal separation. In this paper, we present the basic theory and applications of ICA, and our recent work on t...
Aapo Hyvärinen, Erkki Oja
Added 19 Dec 2010
Updated 19 Dec 2010
Type Journal
Year 2000
Where NN
Authors Aapo Hyvärinen, Erkki Oja
Comments (0)