Sciweavers

NPL
2000

Bayesian Sampling and Ensemble Learning in Generative Topographic Mapping

13 years 11 months ago
Bayesian Sampling and Ensemble Learning in Generative Topographic Mapping
Generative topographic mapping (GTM) is a statistical model to extract a hidden smooth manifold from data, like the self-organizing map (SOM). Although a deterministic search algorithm for the hyperparameters regulating the smoothness of the manifold has been proposed previously, it is based on approximations that are valid only on abundant data. Thus, it often fails to obtain suitable estimates on small data. In this paper, to improve the hyperparameter search in GTM, we construct a Gibbs sampler on the model, which generates random sample series following the posteriors on the hyperparameters. Reliable estimates are obtained from the samples. In addition, we obtain another deterministic algorithm using the ensemble learning. From the result of an experimental comparison of these algorithms, an efficient method for reliable estimation in GTM is suggested.
Akio Utsugi
Added 19 Dec 2010
Updated 19 Dec 2010
Type Journal
Year 2000
Where NPL
Authors Akio Utsugi
Comments (0)