The usual methods of applying Bayesian networks to the modeling of temporal processes, such as Dean and Kanazawa's dynamic Bayesian networks (DBNs), consist in discretizing time and creating an instance of each random variable for each point in time. We present a new approach called network of probabilistic events in discrete time (NPEDT), for temporal reasoning with uncertainty in domains involving probabilistic events. Under this approach, time is discretized and each value of a variable represents the instant at which a certain event may occur. This is the main difference with respect to DBNs, in which the value of a variable Vi represents the state of a real-world property at time ti. Therefore, our method is more appropriate for temporal fault diagnosis, because only one variable is necessary for representing the occurrence of a fault and, as a consequence, the networks involved are much simpler than those obtained by using DBNs. In contrast, DBNs are more appropriate for mo...
Severino F. Galán, Francisco Javier D&iacut