In this paper, we first discuss the meaning of physical embodiment and the complexity of the environment in the context of multi-agent learning. We then propose a vision-based reinforcement learning method that acquires cooperative behaviors in a dynamic environment. We use the robot soccer game initiated by RoboCup (Kitano et al., 1997) to illustrate the effectiveness of our method. Each agent works with other team members to achieve a common goal against opponents. Our method estimates the relationships between a learner's behaviors and those of other agents in the environment through interactions (observations and actions) using a technique from system identification. In order to identify the model of each agent, Akaike's Information Criterion is applied to the results of Canonical Variate Analysis to clarify the relationship between the observed data in terms of actions and future observations. Next, reinforcement learning based on the estimated state vectors is performe...