In this paper we address the problem of reliable real-time 3D-tracking of multiple objects which are observed in multiple wide-baseline camera views. Establishing the spatio-temporal correspondence is a problem with combinatorial complexity in the number of objects and views. In addition vision based tracking suffers from the ambiguities introduced by occlusion, clutter and irregular 3D motion. In this paper we present a discrete relaxation algorithm for reducing the intrinsic combinatorial complexity by pruning the decision tree based on unreliable prior information from independent 2D-tracking for each view. The algorithm improves the reliability of spatio-temporal correspondence by simultaneous optimisation over multiple views in the case where 2D-tracking in one or more views are ambiguous. Application to the 3D reconstruction of human movement, based on tracking of skin-coloured regions in three views, demonstrates considerable improvement in reliability and performance. Results ...