Sciweavers

COMBINATORICS
1999

Orthogonal Colorings of Graphs

14 years 4 days ago
Orthogonal Colorings of Graphs
An orthogonal coloring of a graph G is a pair {c1, c2} of proper colorings of G, having the property that if two vertices are colored with the same color in c1, then they must have distinct colors in c2. The notion of orthogonal colorings is strongly related to the notion of orthogonal Latin squares. The orthogonal chromatic number of G, denoted by O(G), is the minimum possible number of colors used in an orthogonal coloring of G. If G has n vertices, then the definition implies that n O(G) n. G is said to have an optimal orthogonal coloring if O(G) = n . If, in addition, n is an integer square, then we say that G has a perfect orthogonal coloring, since for any two colors x and y, there is exactly one vertex colored by x in c1 and by y in c2. The purpose of this paper is to study the parameter O(G) and supply upper bounds to it which depend on other graph parameters such as the maximum degree and the chromatic number. We also study the structure of graphs having an optimal or per...
Yair Caro, Raphael Yuster
Added 22 Dec 2010
Updated 22 Dec 2010
Type Journal
Year 1999
Where COMBINATORICS
Authors Yair Caro, Raphael Yuster
Comments (0)