The convergence of a class of combined spectral-finite difference methods using Hermite basis, applied to the Fokker-Planck equation, is studied. It is shown that the Hermite based spectral methods are convergent with spectral accuracy in weighted Sobolev space. Numerical results indicating the spectral convergence rate are presented. A velocity scaling factor is used in the Hermite basis and is shown to improve the accuracy and effectiveness of the Hermite spectral approximation, with no increase in workload. Some basic analysis for the selection of the scaling factors is also presented.
Johnson C. M. Fok, Benyu Guo, Tao Tang