Abstract—Interest in multimodal optimization function is expanding rapidly since real-world optimization problems often require the location of multiple optima in the search space. In this context, fitness sharing has been used widely to maintain population diversity and permit the investigation of many peaks in the feasible domain. This paper reviews various strategies of sharing and proposes new recombination schemes to improve its efficiency. Some empirical results are presented for high and a limited number of fitness function evaluations. Finally, the study compares the sharing method with other niching techniques.