—There is an ever-increasing demand for more complex transactions and higher throughputs in transaction processing systems leading to higher degrees of transaction concurrency and, hence, higher data contention. The conventional two-phase locking (2PL) Concurrency Control (CC) method may, therefore, restrict system throughput to levels inconsistent with the available processing capacity. This is especially a concern in shared-nothing or data-partitioned systems due to the extra latencies for internode communication and a reliable commit protocol. The optimistic CC (OCC) is a possible solution, but currently proposed methods have the disadvantage of repeated transaction restarts. We present a distributed OCC method followed by locking, such that locking is an integral part of distributed validation and two-phase commit. This method ensures at most one re-execution, if the validation for the optimistic phase fails. Deadlocks, which are possible with 2PL, are prevented by preclaiming lo...