We investigate the application of genetic algorithms (GAs) for recognizing real two-dimensional (2-D) or three-dimensional (3-D) objects from 2-D intensity images, assuming that the viewpoint is arbitrary. Our approach is model-based (i.e., we assume a predefined set of models), while our recognition strategy lies on the recently proposed theory of algebraic functions of views. According to this theory, the variety of 2-D views depicting an object can be expressed as a combination of a small number of 2-D views of the object. This implies a simple and powerful strategy for object recognition: novel 2-D views of an object (2-D or 3-D) can be recognized by simply matching them to combinations of known 2-D views of the object. In other words, objects in a scene are recognized by "predicting" their appearance through the combination of known views of the objects. This is an important idea, which is also supported by psychophysical findings indicating that the human visual system ...
George Bebis, Evangelos A. Yfantis, Sushil J. Loui