We consider input-queued switch architectures dealing at their interfaces with variable-size packets, but internally operating on fixed-size cells. Packets are segmented into cells at input ports, transferred through the switching fabric, and reassembled at output ports. Cell transfers are controlled by a scheduling algorithm, which operates in packet-mode: all cells belonging to the same packet are transferred from inputs to outputs without interruption. We prove that input-queued switches using packet-mode scheduling can achieve 100% throughput, and we show by simulation that, depending on the packet size distribution, packet-mode scheduling may provide advantages over cell-mode scheduling.