Sciweavers

TSE
2002

Better Reliability Assessment and Prediction through Data Clustering

13 years 11 months ago
Better Reliability Assessment and Prediction through Data Clustering
This paper presents a new approach to software reliability modeling by grouping data into clusters of homogeneous failure intensities. This series of data clusters associated with different time segments can be directly used as a piecewise linear model for reliability assessment and problem identification, which can produce meaningful results early in the testing process. The dual model fits traditional software reliability growth models (SRGMs) to these grouped data to provide long-term reliability assessments and predictions. These models were evaluated in the testing of two large software systems from IBM. Comparing to existing SRGMs fitted to raw data, our models are generally more stable over time and produce more consistent and accurate reliability assessments and predictions.
Jeff Tian
Added 23 Dec 2010
Updated 23 Dec 2010
Type Journal
Year 2002
Where TSE
Authors Jeff Tian
Comments (0)