We prove new lower bounds for learning intersections of halfspaces, one of the most important concept classes in computational learning theory. Our main result is that any statistical-query algorithm for learning the intersection of √ n halfspaces in n dimensions must make 2Ω( √ n) queries. This is the first non-trivial lower bound on the statistical query dimension for this concept class (the previous best lower bound was nΩ(logn)). Our lower bound holds even for intersections of low-weight halfspaces. In the latter case, it is nearly tight. We also show that the intersection of two majorities (low-weight halfspaces) cannot be computed by a polynomial threshold function (PTF) with fewer than nΩ(logn/loglogn) monomials. This is the first super-polynomial lower bound on the PTF length of this concept class, and is nearly optimal. For intersections of k = ω(logn) low-weight halfspaces, we improve our lower bound to min{2Ω( √ n),nΩ(k/logk)}, which too is nearly optimal...
Adam R. Klivans, Alexander A. Sherstov