—We present a fully automatic face recognition algorithm and demonstrate its performance on the FRGC v2.0 data. Our algorithm is multimodal (2D and 3D) and performs hybrid (feature based and holistic) matching in order to achieve efficiency and robustness to facial expressions. The pose of a 3D face along with its texture is automatically corrected using a novel approach based on a single automatically detected point and the Hotelling transform. A novel 3D Spherical Face Representation (SFR) is used in conjunction with the Scale-Invariant Feature Transform (SIFT) descriptor to form a rejection classifier, which quickly eliminates a large number of candidate faces at an early stage for efficient recognition in case of large galleries. The remaining faces are then verified using a novel region-based matching approach, which is robust to facial expressions. This approach automatically segments the eyesforehead and the nose regions, which are relatively less sensitive to expressions and ...
Ajmal S. Mian, Mohammed Bennamoun, Robyn A. Owens