In this paper, we propose a new constructive method, based on cooperative coevolution, for designing automatically the structure of a neural network for classification. Our approach is based on a modular construction of the neural network by means of a cooperative evolutionary process. This process benefits from the advantages of coevolutionary computation as well as the advantages of constructive methods. The proposed methodology can be easily extended to work with almost any kind of classifier. The evaluation of each module that constitutes the network is made using a multiobjective method. So, each new module can be evaluated in a comprehensive way, considering different aspects, such as performance, complexity, or degree of cooperation with the previous modules of the network. In this way, the method has the advantage of considering not only the performance of the networks, but also other features. The method is tested on 40 classification problems from the UCI machine learnin...