Sciweavers

PR
2007

GAPS: A clustering method using a new point symmetry-based distance measure

13 years 11 months ago
GAPS: A clustering method using a new point symmetry-based distance measure
In this paper, an evolutionary clustering technique is described that uses a new point symmetry-based distance measure. The algorithm is therefore able to detect both convex and non-convex clusters. Kd-tree based nearest neighbor search is used to reduce the complexity of finding the closest symmetric point. Adaptive mutation and crossover probabilities are used. The proposed GA with point symmetry (GAPS) distance based clustering algorithm is able to detect any type of clusters, irrespective of their geometrical shape and overlapping nature, as long as they possess the characteristic of symmetry. GAPS is compared with existing symmetry-based clustering technique SBKM, its modified version, and the well-known K-means algorithm. Sixteen data sets with widely varying characteristics are used to demonstrate its superiority. For real-life data sets, ANOVA and MANOVA statistical analyses are performed. ᭧ 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Sanghamitra Bandyopadhyay, Sriparna Saha
Added 27 Dec 2010
Updated 27 Dec 2010
Type Journal
Year 2007
Where PR
Authors Sanghamitra Bandyopadhyay, Sriparna Saha
Comments (0)