Sciweavers

PRL
2007

Neighbor number, valley seeking and clustering

13 years 12 months ago
Neighbor number, valley seeking and clustering
This paper proposes a novel nonparametric clustering algorithm capable of identifying shape-free clusters. This algorithm is based on a nonparametric estimation of the normalized density derivative (NDD) and the local convexity of the density distribution function, both of which are represented in a very concise form in terms of neighbor numbers. We use NDD to measure the dissimilarity between each pair of observations in a local neighborhood and to build a connectivity graph. Combined with the local convexity, this similarity measure can detect observations in local minima (valleys) of the density function, which separate observations in different major clusters. We demonstrate that this algorithm has a close relationship with the single-linkage hierarchical clustering and can be viewed as its extension. The performance of the algorithm is tested with both synthetic and real datasets. An example of color image segmentation is also given. Comparisons with several representative exist...
Chaolin Zhang, Xuegong Zhang, Michael Q. Zhang, Ya
Added 27 Dec 2010
Updated 27 Dec 2010
Type Journal
Year 2007
Where PRL
Authors Chaolin Zhang, Xuegong Zhang, Michael Q. Zhang, Yanda Li
Comments (0)