Performance quantification of biometric systems, such as face tracking and recognition highly depend on the database used for testing the systems. Systems trained and tested on realistic and representative databases evidently perform better. Actually, the main reason for evaluating any system on test data is that these data sets represent problems that systems might face in the real world. However, building biometric video databases with realistic background for testing is expensive especially due to its high demand of cooperation from the side of the participants. For example, XM2VTS database contain thousands of video recorded in a studio from 295 subjects. Recording these subjects repeatedly in public places such as supermarkets, offices, streets, etc., is not realistic. To this end, we present a procedure to separate the background of a video recorded in studio conditions with the purpose to replace it with an arbitrary complex background, e.g., outdoor scene containing motion, t...