Accurate rigid and non-rigid tracking of faces is a challenging task in computer vision. Recently, appearance-based 3D face tracking methods have been proposed. These methods can successfully tackle the image variability and drift problems. However, they may fail to provide accurate out-of-plane face motions since they are not very sensitive to out-of-plane motion variations. In this paper, we present a framework for fast and accurate 3D face and facial action tracking. Our proposed framework retains the strengths of both appearance and 3D data-based trackers. We combine an adaptive appearance model with an online stereo-based 3D model. We provide experiments and performance evaluation which show the feasibility and usefulness of the proposed approach. Ó 2007 Elsevier B.V. All rights reserved.