We use a generalization of the Lindeberg principle developed by Sourav Chatterjee to prove universality properties for various problems in communications, statistical learning and random matrix theory. We also show that these systems can be viewed as the limiting case of a properly defined sparse system. The latter result is useful when the sparse systems are easier to analyze than their dense counterparts. The list of problems we consider is by no means exhaustive. We believe that the ideas can be used in many other problems relevant for information theory.