: We develop a framework for solving polynomial equations with size constraints on solutions. We obtain our results by showing how to apply a technique of Coppersmith for finding small solutions of polynomial equations modulo integers to analogous problems over polynomial rings, number fields, and function fields. This gives us a unified view of several problems arising naturally in cryptography, coding theory, and the study of lattices. We give (1) a polynomial-time algorithm for finding small solutions of polynomial equations modulo ideals over algebraic number fields, (2) a faster variant of the Guruswami-Sudan algorithm for list decoding of Reed-Solomon codes, and (3) an algorithm for list decoding of algebraic-geometric codes that handles both single-point and multi-point codes. Coppersmith’s algorithm uses lattice basis reduction to find a short vector in a carefully constructed lattice; powerful analogies from algebraic number theory allow us to identify the appropriate...