In 1966 Barnette introduced a set of graphs, called circuit graphs, which are obtained from 3-connected planar graphs by deleting a vertex. Circuit graphs and 3-connected planar graphs share many interesting properties which are not satisfied by general 2-connected planar graphs. Circuit graphs have nice closure properties which make them easier to deal with than 3-connected planar graphs for studying some graph-theoretic properties. In this paper, we study some enumerative properties of circuit graphs. For enumeration purpose, we define rooted circuit maps and compare the number of rooted circuit maps with those of rooted 2-connected planar maps and rooted 3-connected planar maps.