This paper investigates the energy-saving organization of sensor nodes in large wireless sensor networks. Due to a random deployment used in many application scenarios, much more nodes need to be deployed to achieve a complete sensor coverage than theoretically needed in case of an ideal deployment. Consequently, most of the deployed nodes are redundant and can be switched-off for a long time to save energy. A well-known principle to detect the redundancy of nodes is to divide sensor network into equally sized cells. Assuming a well chosen cell size, depending on transmission range and sensing range, it is possible to switch-off all nodes but one per cell. The idea was applied in the extended geographic adaptive fidelity algorithm (XGAF), which divides the network into virtual square cells . In the current work, we improve the idea of XGAF by using different tessellating cell shapes, namely triangles, pentagons and hexagons. Furthermore, we examine the cell shapes in terms of coverage,...