We study the electronic and transport properties of heterostructures formed by armchair graphene nanoribbons with intersections of finite length. We describe the system by a tight-binding model and calculate the density of states and the conductance within the Green's function formalism based on real-space renormalization techniques. We show the apparition of interface states and bound states in the continuum which present a strong dependence of the heterostructure geometry. We investigate the effects on the conductance of an external perturbation applied on the edges atoms of the intersection region. r 2007 Elsevier Ltd. All rights reserved.
L. Rosales, P. Orellana, Z. Barticevic, M. Pacheco