Abstract—We revisit the shortest path problem in asynchronous duty-cycled wireless sensor networks, which exhibit time-dependent features. We model the time-varying link cost and distance from each node to the sink as periodic functions. We show that the time-cost function satisfies the FIFO property, which makes the time-dependent shortest path problem solvable in polynomial-time. Using the β-synchronizer, we propose a fast distributed algorithm to build all-to-one shortest paths with polynomial message complexity and time complexity. The algorithm determines the shortest paths for all discrete times with a single execution, in contrast with multiple executions needed by previous solutions. We further propose an efficient distributed algorithm for time-dependent shortest path maintenance. The proposed algorithm is loop-free with low message complexity and low space complexity of O(maxdeg), where maxdeg is the maximum degree for all nodes. The performance of our solution is evalua...