Significant research effort has been directed towards the design and performance analysis of imperfect scheduling policies for wireless networks. These imperfect schedulers are of interest despite being sub-optimal, as they allow for more tractable implementation at the expense of some loss in performance. However much of this prior work takes a uniform scaling approach to analyzing scheduling performance, whereby the performance of a scheduling policy is characterized in terms of a single scalar quantity, the efficiency-ratio. While suitable for characterizing worst-case performance, this approach limits one’s ability to understand the different extents of performance degradation that may be experienced by different links in a network. Such an understanding is very valuable when average performance is of greater interest than the worst-case, or when certain links are more important than others. Furthermore, once one approaches scheduler design with non-uniform performance guarant...
Vartika Bhandari, Nitin H. Vaidya