An edge-colored graph G is rainbow edge-connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow edgeconnected. We prove that if G has n vertices and minimum degree δ then rc(G) < 20n/δ. This solves open problems from [5] and [3]. A vertex-colored graph G is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. One cannot upper-bound one of these parameters in terms of the other. Nevertheless, we prove that if G has n vertices and minimum degree δ then rvc(G) < 11n/δ. We note that the proof in this case is different from the proof for the edgecolored case, and we cannot deduce one ...