■ Knowledge about cause and effect relationships (e.g., virus– epidemic) is essential for predicting changes in the environment and for anticipating the consequences of events and oneʼs own actions. Although there is evidence that predictions and learning from prediction errors are instrumental in acquiring causal knowledge, it is unclear whether prediction error circuitry remains involved in the mental representation and evaluation of causal knowledge already stored in semantic memory. In an fMRI study, participants assessed whether pairs of words were causally related (e.g., virus–epidemic) or noncausally associated (e.g., emerald–ring). In a second fMRI study, a task cue prompted the participants to evaluate either the causal or the noncausal associative relationship between pairs of words. Causally related pairs elicited higher activity in OFC, amygdala, striatum, and substantia nigra/ventral tegmental area than noncausally associated pairs. These regions were also more a...
Daniela B. Fenker, Mircea Ariel Schoenfeld, Michae