—Over the next decades, the Internet will evolve to support increasingly complex mission-critical services such as telerobotically controlled surgery. The world’s first telerobotic surgery over the public Internet was performed in 2003, and since then several hundred more have been performed. Three critical requirements of these services include: (i) essentially 100% restoration capability, (ii) small and bounded end-toend queuing delays (ie < 250 millsec), and (iii) very low-jitter communications (ie < 10 millisec). In this paper, algorithms to provision mission-critical services over the Internet with essentially 100% restoration capability and essentially-perfect QoS are proposed, building upon two theoretical foundations. Mission-critical traffic is routed using the theory of shared backup protection paths or p-cycles, while background traffic is routed using multiple edge-disjoint paths. Mission-critical traffic is scheduled using the theory of recursive stochastic m...
T. H. Szymanski, D. Gilbert