Abstract. Unlike people, household robots cannot rely on commonsense knowledge when accomplishing everyday tasks. We believe that this is one of the reasons why they perform poorly in comparison to humans. By integrating extensive collections of commonsense knowledge into mobile robot’s knowledge bases, the work proposed in this paper enables robots to flexibly infer control decisions under changing environmental conditions. We present a system that converts commonsense knowledge from the large Open Mind Indoor Common Sense database from natural language into a Description Logic representation that allows for automated reasoning and for relating it to other sources of knowledge.