In this article, we propose a new lattice-based threshold ring signature scheme, modifying Aguilar’s code-based solution to use the short integer solution (SIS) problem as security assumption, instead of the syndrome decoding (SD) problem. By applying the CLRS identification scheme, we are also able to have a performance gain as result of the reduction in the soundness error to 1/2 per round. Such gain is also maintained through the application of the Fiat-Shamir heuristics to derive signatures from our identification scheme. From security perspective we also have improvements, because our scheme exhibits a worst-case to average-case reduction typical of lattice-based cryptosystems. This gives us confidence that a random choice of parameters results in a system that is hard to break, in average.