Sciweavers

MA
2010
Springer

From Archimedean to Liouville copulas

13 years 10 months ago
From Archimedean to Liouville copulas
We use a recent characterization of the d-dimensional Archimedean copulas as the survival copulas of d-dimensional simplex distributions (McNeil and Neˇslehov´a (2009)) to construct new Archimedean copula families, and to examine the relationship between their dependence properties and the radial parts of the corresponding simplex distributions. In particular, a new formula for Kendall’s tau is derived and a new dependence ordering for non-negative random variables is introduced which generalises Laplace transform order. We then generalise the Archimedean copulas to obtain Liouville copulas, which are the survival copulas of Liouville distributions and which are non-exchangeable in general. We derive a formula for Kendall’s tau of Liouville copulas in terms of the radial parts of the corresponding Liouville distributions. Key words: Archimedean copula, simplex distribution, 1-norm symmetric distribution, Liouville distribution, Kendall’s tau, Williamson d-transform, Laplace tr...
Alexander J. McNeil, Johanna Neslehová
Added 29 Jan 2011
Updated 29 Jan 2011
Type Journal
Year 2010
Where MA
Authors Alexander J. McNeil, Johanna Neslehová
Comments (0)