International Conference on Medical Image Computing and Computer Assisted Intervention, Beijing, China, 20-24 September 2010 Extracting numerous cells in a large microscopic image is often required in medical research. The challenge is to reduce the segmentation complexity on a large image without losing the fine segmentation granularity of small structures. We propose a constrained spectral graph partitioning approach where the segmentation of the entire image is obtained from a set of patch segmentations, independently derived but subject to stitching constraints between neighboring patches. The constraints come from mutual agreement analysis on patch segmentations from a previous round. Our experimental results demonstrate that the constrained segmentation not only stitches solutions seamlessly along overlapping patch borders but also refines the segmentation in the patch interiors.
Elena Bernardis, Stella X. Yu