—Facial expression is a natural and powerful means of human communication. Recognizing spontaneous facial actions, however, is very challenging due to subtle facial deformation, frequent head movements, and ambiguous and uncertain facial motion measurements. Because of these challenges, current research in facial expression recognition is limited to posed expressions and often in frontal view. A spontaneous facial expression is characterized by rigid head movements and nonrigid facial muscular movements. More importantly, it is the coherent and consistent spatiotemporal interactions among rigid and nonrigid facial motions that produce a meaningful facial expression. Recognizing this fact, we introduce a unified probabilistic facial action model based on the Dynamic Bayesian network (DBN) to simultaneously and coherently represent rigid and nonrigid facial motions, their spatiotemporal dependencies, and their image measurements. Advanced machine learning methods are introduced to lear...