Abstract. One of the key problems in model-based reinforcement learning is balancing exploration and exploitation. Another is learning and acting in large relational domains, in which there is a varying number of objects and relations between them. We provide a solution to exploring large relational Markov decision processes by developing relational extensions of the concepts of the Explicit Explore or Exploit (E3 ) algorithm. A key insight is that the inherent generalization of learnt knowledge in the relational representation has profound implications also on the exploration strategy: what in a propositional setting would be considered a novel situation and worth exploration may in the relational setting be an instance of a well-known context in which exploitation is promising. Our experimental evaluation shows the effectiveness and benefit of relational exploration over several propositional benchmark approaches on noisy 3D simulated robot manipulation problems.