Sciweavers

PR
2010

Classifying transformation-variant attributed point patterns

13 years 10 months ago
Classifying transformation-variant attributed point patterns
This paper presents a classification approach, where a sample is represented by a set of feature vectors called an attributed point pattern. Some attributes of a point are transformational-variant, such as spatial location, while others convey some descriptive feature, such as intensity. The proposed algorithm determines a distance between point patterns by minimizing a Hausdorff-based distance over a set of transformations using a particle swarm optimization. When multiple training samples are available for each class, we implement multidimensional scaling to represent the point patterns in a low-dimensional Euclidean space for visualization and analysis. Results are demonstrated for latent fingerprints from tenprint data and civilian vehicles from circular synthetic aperture radar imagery. Key words: Point pattern matching, Hausdorff distance, SAR, multidimensional scaling, fingerprint
K. E. Dungan, L. C. Potter
Added 29 Jan 2011
Updated 29 Jan 2011
Type Journal
Year 2010
Where PR
Authors K. E. Dungan, L. C. Potter
Comments (0)