Entity linkage is central to almost every data integration and data cleaning scenario. Traditional techniques use some computed similarity among data structure to perform merges and then answer queries on the merged data. We describe a novel framework for entity linkage with uncertainty. Instead of using the linkage information to merge structures a-priori, possible linkages are stored alongside the data with their belief value. A new probabilistic query answering technique is used to take the probabilistic linkage into consideration. The framework introduces a series of novelties: (i) it performs merges at run time based not only on existing linkages but also on the given query; (ii) it allows results that may contain structures not explicitly represented in the data, but generated as a result of a reasoning on the linkages; and (iii) enables an evaluation of the query conditions that spans across linked structures, offering a functionality not currently supported by any traditional...