Abstract. We consider the existence of Partition Equilibrium in Resource Selection Games. Super-strong equilibrium, where no subset of players has an incentive to change their strategies collectively, does not always exist in such games. We show, however, that partition equilibrium (introduced in [4] to model coalitions arising in a social context) always exists in general resource selection games, as well as how to compute it efficiently. In a partition equilibrium, the set of players has a fixed partition into coalitions, and the only deviations considered are by coalitions that are sets in this partition. Our algorithm to compute a partition equilibrium in any resource selection game (i.e., load balancing game) settles the open question from [4] about existence of partition equilibrium in general resource selection games. Moreover, we show how to always find a partition equilibrium which is also a Nash equilibrium. This implies that in resource selection games, we do not need to s...