—Multicore architectures have established themselves as the new generation of computer architectures. As part of the one core to many cores evolution, memory access mechanisms have advanced rapidly. Several new memory access mechanisms have been implemented in many modern commodity multicore architectures. By specifying how processing cores access shared memory, memory access mechanisms directly influence the synchronization capabilities of multicore architectures. Therefore, it is crucial to investigate the synchronization power of these new memory access mechanisms. This paper investigates the synchronization power of coalesced memory accesses, a family of memory access mechanisms introduced in recent large multicore architectures such as the Compute Unified Device Architecture (CUDA). We first define three memory access models to capture the fundamental features of the new memory access mechanisms. Subsequently, we prove the exact synchronization power of these models in terms...
Phuong Hoai Ha, Philippas Tsigas, Otto J. Anshus