Live heap space analyses have so far been concerned with the standard sequential programming model. However, that model is not very well suited for embedded real-time systems, where fragments of code execute concurrently and in orders determined by periodic and sporadic events. Schedulability analysis has shown that the programming model of real-time systems is not fundamentally in conflict with static predictability, but in contrast to accumulative properties like time, live heap space usage exhibits a very state-dependent behavior that renders direct application of schedulability analysis techniques unsuitable. In this paper we propose an analysis of live heap space upper bounds for real-time systems based on an accurate prediction of task execution orders. The key component of our analysis is the construction of a nondeterministic finite state machine capturing all task executions that are legal under given timing assumptions. By adding heap usage information inferred for each seque...